Convolution operators, measures of polynomial growth, and finite point configurations. Krystal Taylor, IMA and University of Minnesota

We study $L^p(\mu) \to L^q(\nu)$ mapping properties of the convolution operator $T_{\lambda}f(x) = \lambda * (f\mu)(x)$, where λ is a tempered distribution, and μ and ν are compactly supported measures satisfying the polynomial growth bounds $\mu(B(x,r)) \leq Cr^{s_{\mu}}$ and $\nu(B(x,r)) \leq Cr^{s_{\nu}}$. As a significant application of this work, we prove variants of the classical L^p -improving (Littman; Strichartz) and maximal (Stein) inequalities in a setting where the Plancherel formula is not available. Another particularly motivating application is to the study of geometric configurations in subsets of Euclidean space of a given Hausdorff dimension.